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Abstract

In this paper, a parameterization level set method is presented to simultaneously perform shape and topology optimi-
zation of compliant mechanisms. The structural shape boundary is implicitly embedded into a higher-dimensional scalar
function as its zero level set, resultantly, establishing the level set model. By applying the compactly supported radial basis
function with favorable smoothness and accuracy to interpolate the level set function, the temporal and spatial Hamilton–
Jacobi equation from the conventional level set method is then discretized into a series of algebraic equations. Accordingly,
the original shape and topology optimization is now fully transformed into a parameterization problem, namely, size opti-
mization with the expansion coefficients of interpolants as a limited number of design variables.

Design of compliant mechanisms is mathematically formulated as a general optimization problem with a nonconvex
objective function and two additionally specified constraints. The structural shape boundary is then advanced as a process
of renewing the level set function by iteratively finding the expansion coefficients of the size optimization with a sequential
convex programming method. It is highlighted that the present method can not only inherit the merits of the implicit
boundary representation, but also avoid some unfavorable features of the conventional discrete level set method, such
as the CFL condition restriction, the re-initialization procedure and the velocity extension algorithm. Finally, an exten-
sively investigated example is presented to demonstrate the benefits and advantages of the present method, especially,
its capability of creating new holes inside the design domain.
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1. Introduction

Compliant mechanisms [27] have been recently emerged as a relatively new family of mechanical devices
that transfer or transmit motion, force, or energy from specified input ports to output ports by elastic defor-
mation of its composing materials. However, a compliant mechanism achieves at least a portion of its mobility
from structural flexibility in contrast to a rigid-link mechanism which gains motion totally via its movable
joints, such as hinges, bearings and slides. It is in fact the strain energy stored in the flexible components that
makes the mechanism fulfill the required function analogous to a rigid-body mechanism. The main advantage
of compliant mechanisms is that fewer parts, fewer assembly processes and no lubrication are required. Due to
their great promise in providing better solutions to lots of mechanical design problems, compliant mechanisms
have recently experienced considerable development in a variety of areas (e.g. [29,55,25,70]). In general, com-
pliant mechanisms can be classified into two types, partially and fully compliant mechanisms [27]. Corre-
spondingly, the methods for designing compliant mechanisms can be approximately put into two categories.

The first approach is based on the so-called pseudo-rigid-body model (PRBM) [26,34], rooting in the con-
cept of rigid-body kinematic synthesis. This approach, however, is limited in its capacities of yielding the elas-
tic deformation that locates locally in small portions similar to the rigid-body mechanisms with flexural or
notch hinges, leading to a partially compliant mechanism with lumped compliance. This kind of mechanism
mainly distorts from a few flexural hinges so that the material surrounding the hinges is prone to suffering
from overstress and overstrains that will speed up the process of fatigue breakage. Furthermore, it is difficult
to extend this method to design precision devices in microsystems because of the approximating behaviors of
the method itself. Although under certain specific loading configurations, the PRBM is available for modeling
beams with continuous deflection [37]. By introducing the topology optimization method rooted with the
homogenization theory of continuum mechanics [5], the second way is therefore established as a systemic syn-
thesis to generate the fully compliant mechanism that has flourished in the last few years with a diversity of
application [1,14,54,32]. The fully compliant mechanism is in essence a kind of jointless mechanical device,
which is capable of producing distributed compliance from the elastic deformation of the entire structure
due to continuity and monolithic of comprising materials [32,70,79]. It is especially suitable for designing pie-
zoelectric transducers in smart structures [58,22] or devices in micro-electromechanical (MEMS) [24,36,56,6],
as the difficulties relevant to the fabrication and assembly of joints and counterparts in micro-scale can be
eliminated.

Topology optimization [10] is a process to determine the best arrangement of a given amount of material in
a design domain by iteratively eliminating and redistributing them until the specified structural performance is
extremized. It is well known the topology optimization is essentially a large-scale integer programming with 0
and 1 design variables [8]. Unfortunately, the optimization problems established with material distribution
schemes are usually ill-posed. Hence, some element-based methods, such as the homogenization [8] or the
SIMP method [9], have been popularly applied as relaxation to generate a well-posed topology optimization
problem. A meaningful solution to the relaxed problem can be guaranteed further by including methods to
smear out numerical instabilities [57].

Level set methods [44] have emerged recently as an attractive alternative to perform structural shape and
topology optimization without relaxation, which first designed for tracking, modeling and simulating the evo-
lution of moving boundaries with topology changes of merging and breaking naturally in many areas [52]. The
level set method essentially leads to an Eulerian system of geometry partial differential equation, capable of
performing topological changes and capturing geometric evolutions at the interface and the boundaries. Sethi-
an et al. [53] can be regarded among the first researchers who introduced the level set methods [44] into struc-
tural optimization. The shape and topology changes are achieved according to the equivalent stresses on the
boundaries rather than the more favorable shape derivatives. Osher and Santosa [43] studied shape and topol-
ogy optimization of an inhomogeneous drum by incorporating the shape derivative into the level set method.
The evolving interface is then tracked by solving a Hamilton–Jacobi equation and the descent of the objective
is ensured by a steepest descent method. Wang et al. [67] presented a way by implicitly embedding the struc-
tural boundary into a scalar function of higher dimension as zero level set, and a first-order Hamilton–Jacobi
PDE is then established to update the scalar function until an optimum is achieved. Wang and Wang [69]
extended the previous method by establishing a ‘‘color’’ multi-phase level set model to perform multi-material
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structural optimization. The highlight of their works should be the connection of the shape derivative [59] with
the powerful level set method [52]. But several numerical requirements of solving the Hamilton–Jacobi PDE
need to be carefully imposed to make the initial value problem meaningful [69]. Allaire et al. [2] studied the
level set shape and topology optimizations by combining the shape sensitivity analysis with the front propa-
gation technologies, including an extension to designs with different objective functions [3].

Currently, the conventional way in applying the level set method to shape and topology optimization is to
directly solve the Hamilton–Jacobi PDE (e.g. [67,2]). In practice, it was noted that the implementation of the
conventional level set method requires an appropriately choice of the time-marching scheme, the re-initializa-
tion procedure the extension velocity algorithm. In these numerical procedures, several complicated Hamil-
ton–Jacobi type PDEs are usually included [52,42]. However, it is well known that these PDEs are seldom
to implement [35], although some schemes like upwind schemes [33] and fast marching methods [46,52] are
available. Furthermore, in the conventional level set method, no ‘‘nucleating’’ mechanisms were incorporated
to create new holes inside the design domain, which makes the final design largely dependent on the initial
guess [13,4]. Hence, the numerical requirements limit the utilities of the conventional level set method to shape
and topology optimization, even if the physical meaning of numerical solutions can be guaranteed in terms of
the unique entropy condition of the Hamilton–Jacobi convection equation [44].

Alternatively, Belytschko et al. [7] described the level set function in a narrow band of the zero level-set
according to nodal variables of the level set function and shape functions of C0 continuity. A heuristic scheme
was applied to update the nodal values of the implicit scalar function to directly propagate the design bound-
ary. Haber [23] used a sequential quadratic programming (SQP) method in conjunction with multilevel con-
tinuation schemes to advance the implicit shape boundary rather than directly solving the Hamilton–Jacobi
PDE, but it was noted that some modifications should be included to make the numerical process efficient
[75]. Wang and Wang [73,74] introduced global shape functions into the conventional level set method and
developed a kind of parameterization scheme. In doing so, the original initial value problem is converted into
a system of coupled ordinary differential equations (ODEs). A steepest descent method was utilized to ensure
the decrease of the objective function, which is a classic gradient method only allowing fast descent locally
rather than a global steepest descent [38]. The interpolation using the global shape functions led to a full dense
collection matrix which would limit its application to large-scale systems. The velocity field was explicitly
worked out in terms of the strain energy density and the Lagrange multiplier of the constraint, and a heuristic
scheme was then applied to extend the velocity field from the design boundary to the entire design domain.
Furthermore, only the simple unconstrained optimization was implemented in the framework of compliance
designs. It is difficult to extend their method to more advanced optimization with multiple constraints, due to
the difficulty in determining active constraints. Hence, it is necessary to put a through investigation to explore
more attractive potential in applying level set methods and radial basis functions to shape and topology opti-
mization. The aim of this paper is therefore to present a new parameterization level set method for shape and
topology optimization of compliant mechanisms using the compactly supported radial basis function
(CSRBF).
2. Implicit boundary representation

In implicit boundary representations of the level set method, structural design boundary is first embedded
implicitly as zero level set of a higher-dimensional level set function, and then an appropriate speed field is
incorporated into the implicitly expressed boundary to iteratively advance the interface on a fixed Eulerian
rectilinear grids [41,52].

A Lipschitz continuous level set function U(x) is defined over a reference domain D � Rd (d = 2 or 3)
including all admissible shapes X (X � D). The 3D structure is then embedded as follows:
UðxÞ > 0 8x 2 X n oX ðinsideÞ
UðxÞ ¼ 0 8x 2 oX \ D ðboundaryÞ
UðxÞ < 0 8x 2 D n X ðoutsideÞ

8><
>: ð1Þ
The representation scheme is illustrated in Fig. 1a and b for a case of d = 2.



Fig. 1. Design domain and the level set model.
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By introducing the pseudo-time t for the dynamic process of shape deformations, one obtains the following
Hamilton–Jacobi equation [52,42]
oUðx; tÞ
ot

þ vnjrUj ¼ 0;Uðx; 0Þ ¼ U0ðxÞ ð2Þ
as a result of the normal velocity vn = v Æ ($U/j$Uj), where (v = dx/dt), n = $U/j$Uj, and jrUj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rU � rU
p

.
The above equation is also known as the level set-based implicit boundary representation. Moving the struc-
tural boundary C = {xjU(x) = 0} along the normal direction is then equivalent to transporting U(x, t) by find-
ing solutions of the Hamilton–Jacobi equation, directly or indirectly.

In the conventional level set method [67,2], the partial differential equation (PDE) in Eq. (2) is directly
solved by using explicit time-marching schemes, such as the finite difference approach [33]. The evolvement
of the level set function is thus governed by a series of solutions of the Hamilton–Jacobi PDE [52]. In general,
the velocity in the Hamilton–Jacobi equation which advances the level set function is obtained from the sen-
sitivity analysis of the objective function, and the descent direction of the objective is determined by the steep-
est descent method [67].

In general, the implicit moving boundary of the level set method possesses several favorite features, which
can be summarized as [67,68]:

(1) The implicit level set methods can simultaneously address shape fidelity and topology changes, espe-
cially, keep the design boundary smooth during the whole optimization process.

(2) The higher-dimensional level set function usually has a simple topology but it cannot prevent its capa-
bility of representing very complicated boundary changes.

(3) The interface represented by the level set function is parametric free because the normal component of a
general velocity vector only exerts influence on the shape geometry while the tangential influences the
shape parameterization.

(4) The theory of viscosity solutions [18] can be applied to guarantee a physically meaningful result for the
level set model of the Hamilton–Jacobi equation.

However, in applying the conventional discrete level set method to shape and topology optimization [67,2],
a general analytical function for the level set function is usually unknown, and thus it needs to be discretized
for enabling the level set process through a distance transform. Thus, it is indispensable to employ numerical
procedures to solve the Hamilton–Jacobi PDE. Hence, the upwind scheme, the re-initialization procedure and
the velocity extension algorithm [52,42] should be carefully handled to make the numerical procedures mean-
ingful. Several numerical issues of the conventional level set method can be further summarized as

(1) The level set function for the same design boundary cannot be uniquely decided since any scalar function
with Lipschitz continuity is available as long as it can keep the zero level set unchanged. When process-
ing the boundary evolvement using the finite difference scheme, the scalar function is prone to drifting
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away from its initial shape of a signed distance function in under-resolved regions [28] or inducing the
unwanted dissipation of the front [61], leading to either a too flat or a too steep surface or hyper-surface.
To stabilize numerical process, the level set function is usually re-initialized as a signed distance function
to avoid a too flat or too steep surface or hyper-surface [46,66]. An easier way is to periodically develop a
new Hamilton–Jacobi PDE to re-initialize the level set function to compensate the numerical errors [52].
However, it was proved that the global re-initializations are time-consuming and also disable creating
new holes inside the material domain. Hence, the periodical re-initializations for the level set function
should be avoided as much as possible.

(2) The mesh should be fine enough to smear numerical truncation errors caused by the polynomial snaking
phenomena if low-order shape functions are used [7,15]. In practice, with an explicit time-marching
scheme, the numerical solution can be theoretically close to the real one only if time and space steps
are infinitely small and all numerical errors are ignored. However, in terms of the Courant–Fried-
richs–Lewy (CFL), the time-step length is decided by the smallest gird size [52]. Hence, a large amount
of iterations is often indispensable to advance the interface on a finer Eulerian grid. Too much iteration,
in turn, will seriously deteriorate the numerical stability due to the accumulation of the truncation errors.
Thus, the CFL condition should be greatly relaxed or eliminated.

(3) The velocity field, originally derived from the shape derivative, is only meaningful at the design bound-
ary. In the conventional level set method, however, the velocity field needs to be explicitly evaluated in a
neighborhood of the design boundary [46,2]. Hence, it is often required to extend the original velocity
field to a set of grids. A most natural way is to extend the velocity field by letting the velocity be constant
along the normal direction, thus leading to another new Hamilton–Jacobi PDE [52].

In this work, the design boundary is still represented as a level set model by fully taking into account the
advantage of the implicit moving boundary. However, the design boundary is advanced by using a parame-
terization scheme rather than solving the Hamilton–Jacobi PDE directly as the conventional level set method
[67,2]. Thus, the related numerical limitations, such as the CFL condition, the re-initialization process and the
velocity extension algorithm, are all expected to be eliminated.

3. Parameterization of the level set function

The radial basis functions [12], radial-symmetrically centered at a particular point or knot, such as globally
defined radial basis functions or compactly supported radial basis functions, have been popularly employed in
approximating multivariate scattered data in recent years. The globally defined radial basis functions have been
used to interpolate the level set function for structural shape and topology optimization [72,73], but the free
shape parameter has a significant influence on the accuracy of the interpolation and there is still absent a
well-established scheme to determine its optimal value [47]. Furthermore, the fully dense matrix will obviously
burden the computational efforts for a system with a large amount of candidate points. Here, the compactly sup-
ported radial basis functions (CSRBFs) [76,49] are employed as an alternative way to overcome the shortcom-
ings of the global basis functions. CSRBFs have been popular in multivariate interpolations due to its strictly
positive definiteness and sparseness [12]. The positive definiteness and continuity can be well incarnated by find-
ing a nonnegative and nonvanishing Fourier transform in terms of the theorem of Bochner [51]. The particular
attractiveness of the CSRBFs is that the interplant can naturally inherit the continuity of the radial basis func-
tions, which enables us to select the appropriate shape functions from a set of well known CSRBFs [77,50].

A variety of CSRBFs can be available [12] in approximating complicated functions. In this paper, a pop-
ularly studied family of CSRBFs with 2k continuity [76,77], such as C2, C4 and C6 functions, is adopted to
interpolate the level set function. As indicated by their shapes and derivatives in Figs. 2–4, any of these
CSRBFs can be applied to interpolate the scalar function with desired smoothness and completeness if
CSRBF knots are properly arranged in the design domain. It is obvious that the C6 function has the highest
differentiability relevant to the steepest caps of shape and derivatives. Hence, it might be more sensitive to the
variation of the support radius. In general, bigger supports should be applied to low-order CSRBFs and smal-
ler supports to high-order CSRBFs [78]. The experiential criterion of choosing an appropriate support radius
is to make a trade-off in both ensuring the non-singularity of the interpolation and guaranteeing a modest



Fig. 2. CSRBF with C2 continuity and its derivatives in X and Y directions.

Fig. 3. Shape of CSRBF-C4 and its derivatives in X and Y directions.

Fig. 4. Shape of CSRBF-C6 and its derivatives in X and Y directions.
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numerical effort. A too small support radius cannot enable CSRBFs to effectively span the inner-constraint
gaps, and a too large radius would remarkably increase the computation time.

3.1. Wendland-C2

(1) Shape and derivatives of the CSRBF with C2 continuity are given, respectively, as
/ðrÞ ¼ maxf0; ð1� rÞg4ð4r þ 1Þ ð3Þ
o/
ox
¼ o/

or
or
ox
¼ maxf0; ð1� rÞg3ð�20rÞ or

ox
ð4Þ

o/
oy
¼ o/

or
or
oy
¼ maxf0; ð1� rÞg3ð�20rÞ or

oy
ð5Þ
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3.2. Wendland-C4

(2) Shape and derivatives of the CSRBF with C4 continuity are given, respectively, as
6 2
/ðrÞ ¼ maxf0; ð1� rÞg ð35r þ 18r þ 3Þ ð6Þ
o/
ox
¼ o/

or
or
ox
¼ maxf0; ð1� rÞg5ð�280r2 � 56rÞ or

ox
ð7Þ

o/
oy
¼ o/

or
or
oy
¼ maxf0; ð1� rÞg5ð�280r2 � 56rÞ or

oy
ð8Þ
3.3. Wendland-C6

(3) Shape and derivatives of the CSRBF with C6 continuity are given, respectively, as
8 3 2
/ðrÞ ¼ maxf0; ð1� rÞg ð32r þ 25r þ 8r þ 1Þ ð9Þ
o/
ox
¼ o/

or
or
ox
¼ maxf0; ð1� rÞg7ð�352r3 � 154r2 � 22rÞ or

ox
ð10Þ

o/
oy
¼ o/

or
or
oy
¼ maxf0; ð1� rÞg7ð�352r3 � 154r2 � 22rÞ or

oy
ð11Þ
In above CSRBFs, the radius of support is given in a 2-D Euclidean space
r ¼ dI

dmI
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ

2
q

dmI
ð12Þ
where dI can be regarded as a function which measures the distance of the current sample knot (x,y) to knot
(xi,yi), and the derivatives of r in different directions is defined as
or
ox
¼ 1

dmI

ðx� xiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ

2
q ð13Þ

or
oy
¼ 1

dmI

ðy � yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ

2
q ð14Þ
The support size at a specified knot is calculated by dmI = dmax Æ CI, where dmax is a scaling parameter factor,
typically 2.0–4.0 for a static analysis, and CI is the distance which is used to guarantee a meaningful interpo-
lation by searching for enough nodes in the neighborhood of the current knot [19].

The level set function can thus be described by centrally positioning the shape functions at their pre-spec-
ified knots over the whole design domain, which means
UðxÞ ¼ uðxÞTa ¼
XN

i¼1

/iðxÞai ð15Þ
with a vector of the shape functions
uðxÞ ¼ ½/1ðxÞ;/2ðxÞ; . . . ;/N ðxÞ�
T 2 RN ð16Þ
and the expansion coefficient vector
a ¼ ½a1; a2; . . . ; aN �T 2 RN ð17Þ

The interpolant is uniquely determined in terms of the given interpolating data of the level set function located
at knots, owning to the property of strictly positive definiteness. Since the present interpolating scheme is
performed under the assumption that all the knots are fixed in the design domain, the space and time of
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the original Hamilton–Jacobi PDE is now thoroughly separated. In this way, the radial basis functions are
spatial functions only and the expansion coefficients are temporal only.
Uðx; tÞ ¼ uðxÞTaðtÞ ð18Þ

the dynamic level set model is given as
uðxÞT _aðtÞ � vnjðruÞTaðtÞj ¼ 0 ð19Þ

The normal velocity field related to the time-derivative of the coefficients is now given as
vn ¼
uðxÞT

jðruÞTaðtÞj
_aðtÞ; _aðtÞ ¼ daðtÞ

dt
ð20Þ
Hereto, the compactly supported radial basis function (CSRBF) is applied to fully parameterize the original
Hamilton–Jacobi PDE in Eq. (2) into an interpolation problem. One scheme is to advance in time the expan-
sion coefficients utilizing Eq. (19) as proposed by Wang and Wang [73]. With an additional heuristic scheme to
extend the velocity field, Eq. (19) can then be applied to each of RBF knots over the entire design domain.

In this paper, as a physically meaningful extension, Eq. (19) is naturally applied to each of these knots of
the CSRBF interpolation. The normal velocity vn in Eq. (20), which does not need to be explicitly worked out,
is now naturally extended to all knots in the entire design domain, which makes it possible to create new holes
inside the design domain.

4. Optimal synthesis of compliant mechanisms

In this section, the shape and topology optimization of compliant mechanisms is established as a general
nonlinear programming problem. The shape derivative is used to perform the design sensitivity analysis.
For the sake of simplicity, the linear elastic structure is used with a single input and a single output but without
losing any generality, and an extension to nonlinear structures [45,11] is straightforward.

4.1. Mathematical formulation of the optimization problem

A variety of research works are concerned with defining an appropriate objective function to embody the
desired structural performance [21,32]. It has been reported that functional specifications of the mechanism,
such as the mechanical advantage (MA), the geometrical advantage (GA) and the mechanical efficiency (ME),
can be used to quantify the mechanical performance [54,30,70]. In particular, ME represents a well-balanced
combination of GA and MA, which is capable of controlling the trade-offs between the desired displacement
and force output. In other words, the MA is used to guarantee the mechanical stiffness to resist the reaction
force, and GA measures the structural flexibility for producing desired deformation. As illustrated in Fig. 5, an
artificial spring model with known-stiffness [54] is introduced to simulate the mutual reaction between a work-
piece and the mechanism.
Fig. 5. Design domain with spring model.



Fig. 6. Input unit dummy load.

Fig. 7. Output unit dummy load.
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The dummy load method [54] is used to describe the displacements engendered by two dummy loading
cases acting on the input (Fig. 6) and the output (Fig. 7) ports, respectively. u1 indicates the displacement field
caused by the unit dummy f1 at the input port, and the displacements at the input and the output ports are
denoted as u1,in and u1,out respectively. Similarly, u2 is the structural displacement field induced by only apply-
ing the unit dummy load f2 at the output port, where u2,in and u2,out are the displacements located at the input
and the output ports.

The displacements Din and Dout involved at the input and the output ports can be formulated respectively by
superposition of the dummy loading cases
Din ¼ Finu1;in þ Foutu2;in ð21Þ
Dout ¼ Finu1;out þ Foutu2;out ð22Þ
where the displacements u1,in, u1,out, u2,in and u2,out can be derived from the displacement fields u1 and u2. It is
noted that u1 and u2 can be obtained respectively by solving the following two self-adjoint weak forms [70]
Z

D
Eijkleijðu1Þeklðt1ÞHðUÞdX ¼ f1t1; ujCD

¼ u0 8t1 2 V1 ð23Þ
Z

D
Eijkleijðu2Þeklðt2ÞHðUÞdX ¼ f2t2; ujCD

¼ u0 8t2 2 V2 ð24Þ
where, Eijkl is the elasticity tensor, eij is the strain tensor, t1 and t2 denote the virtual displacement fields in
spacesV1 and V2 spanned by all kinematically admissible displacements. H(U) is the Heaviside function which
in fact serves as a characteristic function to uniformly indicates different parts in the reference domain D that
has been introduced as a bounded open set to include all admissible shapes [67,2].
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Then, u1,in, u1,out, u2,in and u2,out are found in terms of u1 and u2, sequentially, as
u1;in ¼
Z

D
Eijkleijðu1Þeklðu1ÞHðUÞdX ð25Þ

u1;out ¼
Z

D
Eijkleijðu1Þeklðu2ÞHðUÞdX ð26Þ

u2;in ¼
Z

D
Eijkleijðu2Þeklðu1ÞHðUÞdX ð27Þ

u2;out ¼
Z

D
Eijkleijðu2Þeklðu2ÞHðUÞdX ð28Þ
GA is measured by the ratio of displacements Dout and Din at the output and input ports, and MA is the ratio
of reaction force Fout and Fin at the output and input ports. The force Fout = ks Æ Dout at the output port can be
achieved in terms of the spring model, where ks is the stiffness of the artificial spring. GA and MA are defined,
respectively, as
GA ¼ Dout

Din

¼ u1;out

u1;in � ksu1;inu2;out þ ksu1;outu2;in

� �
ð29Þ

MA ¼ F out

F in

¼ ksu1;out

1� ksu2;out

ð30Þ
ME is then measured by the ratio of output work to input work which is given as
ME ¼ signðGAÞðMA�GAÞ ð31Þ

where the sign(GA) is used to indicate the desired direction of the output displacement.

With the present level set approach, the optimization problem is developed as
Minimize
ðu1;u2Þ

: JUðu1; u2Þ ¼ �MEUðu1; u2Þ

Subject to :

G0Uðu1; u2Þ ¼
R

D g1ðu1; u2ÞHðUÞdX 6 0

G00Uðu1; u2Þ ¼
R

D g2ðu1; u2ÞHðUÞdX 6 0

aUðu1; t1Þ ¼ lUðt1Þ 8t1 2 V1

aUðu2; t2Þ ¼ lUðt2Þ 8t2 2 V2

8>>><
>>>:

8>>>>>><
>>>>>>:

ð32Þ
where G0U is introduced to limit the input displacement to control the maximum stress level in the resulting
mechanism [54], and G00U is a volume fraction constraint used to guarantee the topology change.

The bilinear functionals with respect to the two loading cases can be given respectively as
aUðu1; t1Þ ¼
Z

D
Eijkleijðu1Þeklðt1ÞHðUÞdX ð33Þ

aUðu2; t2Þ ¼
Z

D
Eijkleijðu2Þeklðt2ÞHðUÞdX ð34Þ
The loading functionals are respectively specified as
lUðt1Þ ¼
Z

D
pt1HðUÞdXþ

Z
D

st1dðUÞjrUjdX ð35Þ

lUðt2Þ ¼
Z

D
pt2HðUÞdXþ

Z
D

st2dðUÞjrUjdX ð36Þ
where p and s represent the body forces and boundary tractions, respectively.

4.2. Design sensitivity analysis using shape derivative

The goal of this section is to use design sensitivity analysis way to obtain the first-order derivatives of design
functionals. Amongst many available methods, this section applies the concept of shape derivative [60] to per-



690 Z. Luo et al. / Journal of Computational Physics 227 (2007) 680–705
form the design sensitivity analysis. As far as the development of the shape derivative is concerned, one way is
to use the Fréchet derivative following the way of shape diffeomorphism [67,2]. As an alternation, the material
derivative of continuum mechanics [16] can also be utilized to find the shape derivative, as indicated in Wang
and Wang [68]. Here, the Fréchet derivative is applied to find the shape derivative by considering not only the
change of shapes upon state variables but also the perturbation of the design domain.

Supposing the general functional is defined as follows:
JUðuÞ ¼
Z

D
#ðuÞHðUÞdX ð37Þ
and the corresponding state equilibrium equation is expressed as
aUðu; tÞ ¼ lUðtÞ; 8t 2 V; ujCD
¼ u0 ð38Þ
The shape derivative for a general functional can be worked out by following the popular scheme of Bely-
tschko et al., Allaire et al. [67,2]. Using of the concept of the Fréchet derivative, the details for developing
the shape derivative of JU(u) is provided in Appendix A. Here, we only directly present the final outcome
dJUðuÞ
dt

¼
Z

D
vnqUðu;wÞdðUÞjrUjdX ð39Þ
with the definition of the shape gradient density qU(u,w) as
qUðu;wÞ ¼ #ðuÞ þ pw� EijkleijðuÞeklðwÞ þ rðswÞ � rU
jrUj þ r � rU

jrUj

� �
sw

� �
ð40Þ
Recall vn ¼ uðxÞT _aðtÞ=jðruÞTaðtÞj expressed in Eq. (20), the shape derivative of JU(u) in Eq. (39) can then be
rewritten by
dJðu;UÞ
dt

¼
Z

oD
qUðu;wÞ

uðxÞT

jðruÞTaj
_aðtÞdC ð41Þ
The above mentioned Equation is expressed as boundary integration. Considering the relation
dC = d(U)j$UjdX [68] between boundary oD and volume D, we can get an alternative scheme of volume inte-
gration with the following form
dJðu;UÞ
dt

¼
Z

D
qUðu;wÞ

uðxÞT

jðruÞTaj
dðUÞ _aðtÞjrUjdX ¼

Z
D

qUðu;wÞuðxÞ
TdðUÞ _aðtÞdX ð42Þ
where d(U) is the Dirac function. As Eq. (13) shows, j$Uj = j($u)T aj.
As a matter of fact, we can employ either of them to implement the numerical procedure with the boundary

or the volume integral scheme, respectively. However, it was noted that the boundary integration involves a
time-consuming [71] procedure to calculate j$Uj using Guass quadrature during each iteration, Instead, the
volume integral scheme has been substantiated with a higher efficiency [71]. Therefore, in this work, the vol-
ume integral scheme is used.

In terms of Eq. (42), the shape derivative of ME is written with a summation form as
dMEUðu;wÞ
dt

¼
XN

i¼1

_aiðtÞ
Z

D
nUðu;wÞ/idðUÞdX ð43Þ
Alternatively, the shape derivative of the objective is also expressed using the chain rule as
dMEUðu;wÞ
dt

¼ oMEUðu;wÞ
oa

da
dt
¼
XN

i¼1

_aiðtÞ
oMEUðu;wÞ

oaiðtÞ

� �
ð44Þ
where i = 1,2, . . . ,N indicate the number of CSRBF knots.
As a result, comparing the corresponding terms in Eqs. (43) and (44), we can obtain the design sensitivity of

ME as follows:
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oMEUðu;wÞ
oai

¼
Z

D
nUðu;wÞ/idðUÞdX ð45Þ
by defining the shape gradient density nU(u,w) of ME as
nUðu;wÞ ¼ ½MAUðu;wÞA�Eijkleijðu1Þeklðu1Þ þ ½MAUðu;wÞðBþ DÞ þGAUðu;wÞE�Eijkleijðu1Þeklðu2Þ
�
þ½MAUðu;wÞC þ GAUðu;wÞF �Eijkleijðu2Þeklðu2Þ

�
ð46Þ
where GAU and MAU can be obtained by Eqs. (29) and (30), and the six coefficients are, respectively, defined as
A ¼ ðu1;out � ksu1;outu2;outÞ=ðu1;in � ksu1;inu2;out þ ksu2
1;outÞ ð47Þ

B ¼ ksu2
1;out=ðu1;in � ksu1;inu2;out þ ksu2

1;outÞ ð48Þ
C ¼ �ksu1;outu1;out=ðu1;in � ksu1;inu2;out þ ksu2

1;outÞ ð49Þ
D ¼ ksu1;inu1;out=ðu1;in � ksu1;inu2;out þ ksu2

1;outÞ ð50Þ
E ¼ ks=ð1� ksu2;outÞ ð51Þ
F ¼ k2

s u1;out=ð1� ksu2;outÞ2 ð52Þ
Similarly, the sensitivity for the volume constraint G0U and the maximal input displacement constraint G00U can
be worked out, straightforwardly, as follows:
dG0Uðu;wÞ
dai

¼
Z

D
fUðu;wÞ/idðUÞdX ð53Þ

dG00Uðu;wÞ
oai

¼
Z

D
gUðu;wÞ/idðUÞdX ð54Þ
where fU(u,w) = 1 is the shape density function of the volume constraint, and g is the shape density function of
the input displacement constraint which is written as
gUðu;wÞ ¼ F inEijkleijðu1Þeklðu1Þ þ F in
2u1;out

ð1�ksu2;outÞ
Eijkleijðu1Þeklðu2Þ þ F in

u2
1;out

ð1�ksu2;outÞ2
Eijkleijðu2Þeklðu2Þ

� �
ð55Þ
In numerical implementation, without remeshing, the strain energy density related to the shape gradient den-
sity can be accurately calculated the ‘‘ersatz material’’ approach [2], the geometry projection method [39] or
the extended FE method [72]. This work adopts the simple ‘‘ersatz material’’ scheme to fill the void areas with
one weak material. The element stiffness and the strain are then calculated under the assumption that they are
proportional to their area-fractions of the solid material.

5. Mathematical programming approach

It is well known that the large-scale optimization with multiple constraints is rarely easy to implement [10].
Therefore, to efficiently solve the optimization problem of compliant mechanisms is really an important con-
sideration. The optimality criteria method [48,80] have been successfully applied to solve problems with a large
amount of design variables while single constraint, which usually includes the establishment of a heuristic
updating scheme to renew the design variables. However, it is not always available to find an updating scheme
for a complicated optimization problem [40], especially, a problem with a non-convex objective function [31],
because the updating scheme is, more or less, a matter of experience. In addition, it is difficult to deal with
multiple constrained optimization problems. However, several of the mathematical programming methods
have been applied as more powerful and more theoretically well-established schemes to solve advanced struc-
tural optimization problems [54,55].

Svanberg [62] generalized the CONLIN approach [20] as the method of moving asymptotes (MMA) by
introducing two sets of lower and upper asymptotes to dynamically adjust the convexity of the approxima-
tions. MMA, belonging to the sequential convex programming, has been regarded as one of the well-estab-
lished algorithms for topology optimization problems [56,32]. Specifically, using the concept of the
conservative convex separable approximations, the original optimization problem can be transformed into
a set of linearized, convex and separable sub-problems based on the first or second derivatives at the current
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and previous points. In particular, any of the sub-problems has a strictly convex objective function, which
indicates a globally convergent optimum. At each step, the dual or the interior-point method can be used
to renew design variables [64]. A new version of the globally convergent MMA (GCMMA) [65] has been
developed as a more robust scheme in contrast to the previous versions which may fail on certain problems
[62,63]. However, even if the newest version of GCMMA, it does not necessarily guarantee a globally conver-
gent solution because the original problem itself is not convex [30] in despite of all sub-problems are strictly
convex.

When GCMMA is used to solve the parameterization problem, an algorithm for selecting the move limit
size is incorporated to stabilize the optimization [65]. However, as aforementioned, the move limit size here is
different from the time-step size imposed by the CFL condition [52]. Therefore, the present method is expected
to have a faster convergence, especially, for a finer mesh. In the conventional level set method, the methods for
finding the Lagrange multiplier of the volume constraint appeared to be less effective. A fixed Lagrange mul-
tiplier [67] was introduced to make the mass conservative despite the fact that the constraint cannot be well
satisfied during the entire optimization process. An alternative way for deciding the Lagrange multiplier [2]
is under the assumption that the volume can remain unchanged during the front propagation, but actually
the level set methods cannot make the volume conservative due to the drift of the volume during the optimi-
zation process. Wang et al. [75] applied the bisection algorithm to push the volume back, but it is difficult to
handle multiple constraints. However, the GCMMA is very effective to handle multiple constraints [65] no
matter they are globally or locally imposed. Thus, the present method is mass conservative.

According to GCMMA method, the original optimization formulation given in Eq. (32) should be further
adjusted by introducing some artificial parameters [65] for the sake of ensuring a feasible initial design point,
which is re-expressed as
Minimize
a¼ða1;a2;...;anÞT

: JðaÞ þ a0zþ
Pm
i¼1

ciyi þ 1
2
diy2

i

	 
� �

Subject to :

GiðaÞ � aiz� yi 6 g�i ;

z P 0; yi P 0;

aj;min 6 aj 6 aj;max;

Equilibrium equations:

8>>><
>>>:

8>>>>>>>><
>>>>>>>>:

ð56Þ
where J is the objective function given in Eq. (32), and Gi (i = 1,2) are constraints. aj,min and aj,max are the
lateral constraints of the design variables aj. Here, the design variables are in fact the expansion coefficients
defined in Eq. (18). a0 > 0, ai P 0, ci P 0, di P 0 and ci + di > 0 are the artificial parameters.
y ¼ ðy1; y2; . . . ; ymÞ

T 2 Rm and z 2 R. m is the number of constraints and n is the number of design variables.
The sub-optimization problems related to the pervious formulation is defined in terms of GCMMA approx-

imating expansions [65].
Minimize
a¼ða1;a2;...;anÞT

: J ðkÞðaÞ þ a0zþ
Pm
i¼1

ðciyi þ 1
2
diy2

i Þ
� �

Subject to :

GðkÞi ðaÞ � aiz� yi 6 0;

z P 0; yi P 0;

aj;min 6 aj 6 aj;max;

Equilibrium equations:

8>>><
>>>:

8>>>>>>>><
>>>>>>>>:

ð57Þ
where J(k) is the kth objective of sub-problems and GðkÞi represents the kth approximation of the ith constraint.
Here, we only show the relevant optimization formulations. The details of selecting parameters can refer to
Svanberg [62,65].

6. Numerical application

The synthesis of compliant inverter is one of the widely studied examples in the literature. Here, it is still
presented to demonstrate the availability of the present parameterization level set method. First, it should be
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addressed that the knots have a strong influence on the accuracy of the interpolation. In fact, CSRBF knots
and FE nodes are two different sets of grids, and we can configure a denser or sparser CSRBF knots separately
via other alternative schemes while keeping FE nodes unchanged. In this paper, CSRBF knots are supposed to
be consistent with FE nodes to merely simplify the numerical procedure.

The level set function is initially embedded into the design domain as a signed distance function, but no re-
initialization is applied further during the subsequent iterations. The material properties are defined with
Young’s modulus is 110 GPa and Poisson’s ratio is 0.3. The volume ratio is limited to 0.25, while a maximum
displacement 12 lm is prescribed at the input position to limit the maximal stress in the resulting mechanism.
The terminal criterion is that the relative difference of two successive objective values is less than 0.001.

The design domain is defined as Fig. 8 with a domain size 240 lm · 240 lm, in which the left-upper and
left-lower parts are fixed as the Dirichlet boundary. An actuation force fin = 500 lN is applied at the center
point of the left side (input port) as a non-homogenous Neumann boundary, and an artificial spring with stiff-
ness ks = 0.2 N/mm is attached at the output position to simulate the resistance from a work-piece.

First, only the lower half of the design domain is discretized with 7200 elements by fully considering its sym-
metry. The initial designs and the related level set surfaces with C4 function are given in Fig. 9. To demon-
strate the influence of support radii on final designs, we apply the radius values as 1, 2.5, 5 and 20 times as
the element length, respectively. The final topologies and the relevant level set surface for four different cases
are shown in Fig. 10. The case (a) in Fig. 10 shows that the boundary of the final topology is not smooth
enough, as a small support radius denotes a near singular matrix with a very small bandwidth, which leads
to an unstable optimization process due to a larger numerical error, although the computational expense is
cheaper (each CSRBF subroutine is 109.315s). As indicated by cases (b) and (c), increasing the support radius,
we find that the smoothness of the design boundary is improved and the optimization process is becoming
stable. The bandwidth of the matrix is slightly increased and computation effort is as a result slightly increased
(each CSRBF subroutine is from 184.421 to 201.343s). The case (d) in Fig. 10 shows the design obtained with a
Fig. 8. Design domain of compliant micro-inverter.

Fig. 9. Initial design and its level set surface.



Fig. 10. Optimal topologies and level set surfaces with different support radii.
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very large support radius (each CSRBF subroutine is 405.125s). As its numerical process shows, in addition to
the computation effort being obviously increased, a too large support radius shows a strong diffusion term
which makes the final topology is far beyond a widely recognized one. The experience criterion of choosing
the support radius is to take into account the trade-off between the matrix errors and computation effects.
Thus, the smoothness of the trial function and a moderate numerical efficiency can both be ensured [78]. In



Fig. 11. Optimal topologies and the related level set surfaces.
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terms of our experiences, the value of support radius is in general recommended as 2–4 times as the mesh size
[19]. Furthermore, we implemented three cases using C2, C4 and C6 function with the same support radius 3,
respectively. As displayed in Fig. 11, the final results are similar and it is hard to figure out the obvious dif-
ference. In fact, C2, C4, C6 or a variety of alternative CSRBFs can be available in approximating the level set
surface with favorable smoothness. Here, the C4 function is only utilized as a demonstration in the rest of
numerical cases.

Second, the entire domain is regarded as the design space discretized by 14,400 elements for displaying the
whole mechanism. The iterative process of zero level set-contours is given in Fig. 12, and the related level set
surfaces are shown in Fig. 13. It can be seen that all designs in different stages are characterized with a smooth
design boundary, which means the present method can addresses the shape fidelity and topology changes
simultaneously with a smooth boundary advection. It is well known that a smooth design boundary is espe-
cially meaningful for the shape optimization of boundary motion. The distributions of the expansion coeffi-
cients at different stages are shown in Fig. 14. We find that the design variables gradually gather towards
two extreme-ends along with the optimization process. When the design approaches to the optimal point,
almost all the design variables related to the weak material are swarmed to the same minimal value while those
corresponding to the solid material reach to a maximal value. Hence, the changing process of the design vari-
ables here bears a similarity to that of the SIMP [55]. From the observation of the numerical process, it can be



Fig. 12. Evolution of the topology related to zero-level set: (a) initial design; (b) step 65; (c) step 100; (d) step 150; (e) step 250 and (f) final
design.

Fig. 13. Evolution of the level set surface.(a) initial surface; (b) step 65; (c) step 100; (d) step 150; (e) step 250 and (d) final surface.
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Fig. 14. Evolution of the expansion coefficients. (a) initial distribution; (b) step 65; (c) step 100; (d) step 150; (e) step 250 and (f) final
distribution.
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found that the shape gradient density of the optimal configuration distributes along the design boundary uni-
formly, which is theoretically consistent with the Kuhn–Tucker optimality condition [67]. Fig. 15 displays the
curves of ME and the volume constraint over the iterations, where ME increases from 0.0317 to 0.6308 at start
70 iterations in which the topology optimization is almost completed. After that, it takes 322 iterations to con-
tinuously increase ME from 0.6308 to 0.7616. But these iterations are necessary to complete the shape opti-
mization so as to ensure a uniform distribution of the strain energy density. Thus, in applying the present
parameterization method to shape and topology optimization, the topology optimization is mainly used to
Fig. 15. Convergence histories for case with 7200 elements.



Fig. 16. Final topology and its level set surface with 9800 elements.
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get an overall optimal layout while the shape optimization is applied to improve the specified local
performances.

Third, to substantiate the present parameterization method free from the CFL condition, the lower half of
the design domain is discretized with 9800 and 12,800 elements, respectively. In these cases, their initial designs
are positioned with the same numbers of holes as configured in Fig. 9. For the first case with 9800 elements,
the final design and the corresponding level set surface are given in Fig. 16, respectively. ME is maximized to
0.7681 after 391 iterations. Similarly, the final results of the second case with 12,800 elements are expressed in
Fig. 17, and ME is obtained as 0.7704 after 384 iterations. In these two cases, the slight difference is a finer
mesh more capable of describing the numerical FE model and its boundary condition. In terms of the final
designs displayed in Figs. 12, 16 and 17, we can easily find that the similar designs can be obtained with
the same move limits (m = 0.05), if the initial designs are discretized with different numbers of FE elements.
However, in the conventional level set method [67], it is well known that the time-step size for an explicit time-
marching scheme must be kept small enough to satisfy the CFL condition. Hence, for a finer FE mesh, the
computation effort of the conventional level set method will be evidently increased because the time-step size
is determined by the minimum grid size. If the same conditions are used to test the inverter design by using the
conventional level set method [70], we find that the 9800 and 12,800 elements require more than 2100 and 2600
iterations for outcomes of the final designs, respectively. To address our major concern, the numerical details
are omitted here. In the present method, the move limit has nothing to do with the meshing size and it can be
flexibility adjusted by using MMA algorithm [65] to stabilize the optimization process. Hence, the present
method is thoroughly free from the CFL condition and also it is time-stable for all CSRBF knots, which also
explains the fact that the present algorithm has a rapid convergence to the final design. Further, if we increase
the number of the CSRBF knots, theoretically, the boundary of the final design is prone to becoming
smoother. However, it is unnecessary to overly increase the number of CSRBF knots, and it should be decided
by the practical design because too many CSRBF knots can obviously influence the computational efficiency.
Also, the extension velocity algorithm and the re-initialization procedure in the conventional level set method
can also be reasonably avoided, as it is required to maintain the numerical accuracy of the Hamilton–Jacobi
PDE. Hence, the present method can eliminate the numerical limits of the conventional level set method.
Fig. 17. Final topology and its level set surface with 12,800 elements.
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Finally, the influence of the different initializations upon the final results is also explored with the lower half
of the structure discretized with 7200 elements. The cases in Fig. 18 display the optimal designs derived from
the same domain initialized with different holes. The convergent iterations are 358, 341, 336 and 311, respec-
tively, and the optimal solutions are all around 0.7000. It can be seen that the very similar topologies can be
obtained even if the design domain is initialized with different holes. Hence, we conclude that the similar min-
ima can be achieved as long as the holes positioned in the initial design are enough to completely describe all
Fig. 18. Topologies with different initial holes.



Fig. 19. Evolution of the topology without any hole: (a) initial design; (b) step 25; (c) step 50; (d) step 100; (e) step 200 and (f) final design.
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admissible shape configurations. The simple way to foretell an initial topology can be in conformity to Allaire
et al. [2]. To further show the capability of the present method, the design domain is initialized without any
hole, which is obviously incapable of describing a recognized topology. But Fig. 19 clearly displays that the
present method can generate new holes inside the design domain automatically, in which Fig. 19a is the initial
design and Fig. 19f is the final design obtained after 327 iterations. The corresponding mechanical efficiencies
(MEs) related to the objective function are also given in Fig. 19. In the conventional level set method, the cre-
ation of new holes is not allowed inside the design domain. Therefore, the topological derivative method [4,13]
is usually included to make the following design less dependent on the initial guess or the topological deriv-
ative [13] method is usually included to make the final design less dependent on the initial guess. By eliminating
the global re-initialization procedure in the conventional level set method [67], the present parameterization
method shows its capacity of ‘‘nucleating’’ new holes inside the material domain with the aid of the nature
velocity extension.

7. Conclusions

This paper has presented a parameterization level set method for shape and topology optimization of com-
pliant mechanisms by using compactly supported radial basis functions. The structural boundary is implicitly
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represented as a level set model by implicitly embedding into a higher-dimensional level set function which is
further interpolated using the CSRBF. By discretizing the Hamilton–Jacobi PDE into a set of algebraic equa-
tions, the original shape and topology optimization is transformed into a size optimization of the expansion
coefficients to which the MMA method is applied. Those unfavorable features on the temporal and spatial
discretizations of the Hamilton–Jacobi PDE are now totally eliminated. The optimization is then changed
to a process of moving structural boundary by finding the expansion coefficients to approximate the level
set function in conjunction with CSRBFs located on the knots. The widely studied inverter mechanism is used
to demonstrate the present method.

The present method has provided a new possibility for meaningfully combining the level set method with
the well-established optimization methods. With the parameterization scheme devised in this work, we can
fully take advantages of both the implicit level set representation and the well-founded optimization algo-
rithm. In particular, the present method is capable of dealing with advanced shape and topology optimization
associated with a complicated objective function and multiple constraints, globally or locally imposed. It
should be noted that the present method cannot physically ensure the elimination of de-facto hinges which
is now still an open topic in this area [10]. A complete investigation is therefore outside of the scope of this
paper. The method recently presented by Chen and Wang [17] might be an alternative scheme to handle hinges
in design of compliant mechanisms.
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Appendix A

The aim of this section is to develop the shape derivative of JU (u) in Eq. (37). First, taking the Fréchet
derivative of aU(u,t) with respect to U in the direction of c, we have
daUðu; tÞ
dU

; c

� �
¼ oaUðu; tÞ

ou
; du

� �
þ oaUðu; tÞ

oU
; c

� �
ðA:1Þ
where the two terms on the right-hand side can be separately expressed as
oaUðu; tÞ
ou

; du
� �

¼ aUðdu; tÞ ðA:2Þ

oaUðu; tÞ
oU

; c

� �
¼
Z

D
EijkleijðuÞeklðtÞdðUÞcdX ðA:3Þ
where du denotes the variation of u with respect to U.
The Fréchet derivative of lU(t) with respect to U in the direction of c is given as
olUðtÞ
oU

; c

� �
¼
Z

D
ptdðUÞcdXþ

Z
D

div st
rU
jrUj

� �
dðUÞcdXþ

Z
oD

st
dðUÞ
jrUj

oU
on

cdC ðA:4Þ
With the Fréchet derivatives in (A.1) and (A.2), the state equation in (38) can be specified as
aUðdu; tÞ ¼ olUðtÞ
oU

; c

� �
� oaUðu; tÞ

oU
; c

� �
ðA:5Þ
The Frechet derivative of JU(u) with respect to U in the direction of c is written as
dJUðuÞ
dU

; c

� �
¼ oJUðuÞ

ou
; du

� �
þ oJUðuÞ

oU
; c

� �
ðA:6Þ
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where the right-hand side terms are given, respectively, as
oJUðuÞ
ou

; du
� �

¼
Z

D

o#ðuÞ
ou

duHðUÞdX ðA:7Þ

oJUðuÞ
oU

; c

� �
¼
Z

D
#ðuÞdðUÞcdX ðA:8Þ
To simplify the Fréchet derivative of JU(u), an adjoint displacement field w is introduced to eliminate the inter-
mediate variable du, leading to the following adjoint equation
aUðt;wÞ ¼
Z

D

o#ðuÞ
ou

HðUÞtdX 8t 2 V; wjCD
¼ 0 ðA:9Þ
Let t in the state equilibrium equation (A.5) be w, we have
aUðdu;wÞ ¼ olUðwÞ
oU

; c

� �
� oaUðu;wÞ

oU
; c

� �
ðA:10Þ
At the same time, substitution of t = du into the adjoint equation (A.9) can yield
aUðdu;wÞ ¼
Z

D

o#ðuÞ
ou

HðUÞdudX ðA:11Þ
Then, by using Eqs. (A.7), (A.10) and (A.11), we have the following Eq. (A.12)
Z
D

o#ðuÞ
ou

HðUÞdu dX ¼ oJUðuÞ
ou

; du
� �

¼ olUðwÞ
oU

; c

� �
� oaUðu;wÞ

oU
; c

� �
ðA:12Þ
Letting t (t 2 V) in Eqs. (A.3) and (A.4) be w (w 2 V), and then substituting them into Eq. (A.12), Eq. (A.7)
can then be re-expressed as follows:
oJUðuÞ
ou

; du
� �

¼
Z

D
pwþ div sw

rU
jrUj

� �
� EijkleijðuÞeklðwÞ

� �
dðUÞcdXþ

Z
oD

sw
dðUÞ
jrUj

oU
on

cdC ðA:13Þ
According to Eqs. (A.13), (A.8) and (A.6), we can get the Fréchet derivative of JU(u)
dJUðuÞ
dU

; c

� �
¼
Z

D
#ðuÞ þ pwþ div sw

rU
jrUj

� �
� EijkleijðuÞeklðwÞ

� �
dðUÞcdXþ

Z
oD

sw
dðUÞ
jrUj

� oU
on

cdC ðA:14Þ
The normal velocity field vn = v(x) Æ n(x) and the normal velocity operator, respectively, satisfy the following
conditions
oU
ot
¼ vnjrUj; oU

on






oD

¼ 0 ðA:15Þ
Now, in terms of Eqs. (A.13), (A.14) and (A.15), the derivative of JU(u) with respect to pseudo-time t can be
constructed as follows:
dJUðuÞ
dt

¼ oJUðuÞ
ou

;
oU
ot

� �
þ oJUðuÞ

oU
;
oU
ot

� �

¼
Z

D
vn #ðuÞ þ pwþ div sw

rU
jrUj

� �
� EijkleijðuÞeklðwÞ

� �
dðUÞjrUjdX ðA:16Þ
The shape derivative J 0(u) in Eq. (A.16) indicates that a variation in shape U can have an influence on both the
function J(u) and the state variable u.
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